
Nearest neighbors: performance

Lecture 7
by Marina Barsky



K-NN algorithm. Summary

• The training set is the model

• Advantages:

– Building a classifier: zero work

– Updating the model with every new record: zero 
work

– Interpretable: we can justify our classification

– Good for predicting numeric values (Regressor)

• Disadvantages:

– The query is computationally expensive!



K-NN query performance: 
time and space

Space: O(M x N)

Running time: O(M x N)

• M – number of attributes

• N – total instances in the training set



K-NN performance improvements 

Heuristic algorithms:
1. IB2: save memory, speed up classification
2. IB3: deal with noise

Data structures:

1. KD-tree
2. Ball-tree

*) IB – Instance Based



Algorithm example: IB2 

main idea
• Work incrementally

• Only incorporate misclassified instances



Example: IB2

Dataset: 
“Who buys gold jewelry”



IB2 example

• Data:
– (25,60,no) 
– (85,140,yes) 
– (45,60,no) 
– (30,260,yes) 
– (50,75,no) 
– (50,120,no)
– (70,110,yes)
– (25,400,yes)
– (50,100,no)
– (45,350,yes)
– (50,275,yes)
– (60,260,yes)

IB2 output: We memorize only 

these 5 points. 



IB2 example
• Data:

– (25,60,no)



IB2 example
• Data:

– (25,60,no) 
– (85,140,yes)



IB2 example
• Data:

– (25,60,no) 
– (85,140,yes) 
– (45,60,no)



IB2 example
• Data:

– (25,60,no) 
– (85,140,yes) 
– (45,60,no)

X



IB2 example
• Data:

– (25,60,no) 
– (85,140,yes) 
– (45,60,no) 
– (30,260,yes)



IB2 example
• Data:

– (25,60,no) 
– (85,140,yes) 
– (45,60,no) 
– (30,260,yes)
– (50,75,no)



IB2 example
• Data:

– (25,60,no) 
– (85,140,yes) 
– (45,60,no) 
– (30,260,yes)
– (50,75,no)

X



IB2 example
• Data:

– (25,60,no) 
– (85,140,yes) 
– (45,60,no) 
– (30,260,yes)
– (50,75,no)
– (50,120,no)



IB2 example
• Data:

– (25,60,no) 
– (85,140,yes) 
– (45,60,no) 
– (30,260,yes)
– (50,75,no)
– (50,120,no)



IB2 example
• Continuing in a similar 

way, we finally get a 
smaller set to 
memorize. 
– The colored points 

are the ones that 
get memorized. 

This is the final answer. 
I.e. we memorize only 

these 5 points. 



IB2 summary

• Work incrementally

• Only incorporate misclassified instances

• Problem: noisy data might get incorporated



Data structure example: KD-tree

To find nearest neighbors quickly, use a special type of a 
binary tree: KD-tree

• At the root of the tree we split the set of points into two 
subsets of same size by a hyperplane vertical to x1-axis 
(first dimension)

• At the children of the root, the partition is based on the 
second dimension: x2

• At depth d, we start all over again by partitioning on the 
first coordinate

• The recursion stops until there is only one point left, which 
is stored as a leaf



2-dimensional kd-trees

• Algorithm:

– Choose x or y coordinate (alternate)

– Choose the median of the coordinate: this defines a 
horizontal or vertical line

– Recurse on both sides

• We get a binary tree:

– Size O(n)

– Depth O(logn)

– Construction time O(nlogn)



Construction of kd-trees



Construction of kd-trees



Construction of kd-trees



Construction of kd-trees



Construction of kd-trees



The complete kd-tree



Region of node v

Region(v) : the subtree rooted at v stores the points in 
black dots



d-dimensional kd-trees

• A data structure to support range queries in Rd

• Preprocessing time: O(nlogn)

• Space complexity: O(n)

• Query time: O(n1-1/d+k)


